If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+40X+30=0
a = 1; b = 40; c = +30;
Δ = b2-4ac
Δ = 402-4·1·30
Δ = 1480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1480}=\sqrt{4*370}=\sqrt{4}*\sqrt{370}=2\sqrt{370}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{370}}{2*1}=\frac{-40-2\sqrt{370}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{370}}{2*1}=\frac{-40+2\sqrt{370}}{2} $
| -3=c+9 | | 4(2-3b)=36 | | x–8=1x3 | | -1/1x=4.4 | | (20x+4)+(6x-10)=180 | | -4x|+6x^2+2x=0 | | 6x+4=10×-20 | | 4x5=40- | | 40+8c+16C=400 | | 25x-175=475 | | G=2+3k | | 23=m/3+26 | | 9/12=n/10 | | 8x–3x+4=6+2x+10 | | 49a²=16 | | x=20,259.5+8,657.37 | | 2.4x=80 | | (a+3)/2;a=5 | | 3/x=85.4 | | 3.2x=21.76 | | 2x/5+10=25 | | X+6y-1=0 | | 10x=-230 | | 3(x−6)=21 | | 5+n=7.75 | | 8x-5=5x+13/6 | | 2-m/8=3 | | 2x+1=x8 | | 4x-16=-2x+2 | | x/7=-28 | | 7x2+21x=0;x1 | | 5.5x+9.5=-5x-16.5 |